262 research outputs found

    Low-Code Programming Models

    Full text link
    Traditionally, computer programming has been the prerogative of professional developers using textual programming languages such as C, Java, or Python. Low-code programming promises an alternative: letting citizen developers create programs using visual abstractions, demonstrations, or natural language. While low-code programming is currently getting a lot of attention in industry, the relevant research literature is scattered, and in fact, rarely uses the term "low-code". This article brings together low-code literature from various research fields, explaining how techniques work while providing a unified point of view. Low-code has the potential to empower more people to automate tasks by creating computer programs, making them more productive and less dependent on scarce professional software developers

    Polemik um Lavater: Der Sendschreiben-Streit von 1775/76

    Get PDF

    A Pattern Calculus for Rule Languages: Expressiveness, Compilation, and Mechanization (Artifact)

    Get PDF
    This artifact contains the accompanying code for the ECOOP 2015 paper: "A Pattern Calculus for Rule Languages: Expressiveness, Compilation, and Mechanization". It contains source files for a full mechanization of the three languages presented in the paper: CAMP (Calculus for Aggregating Matching Patterns), NRA (Nested Relational Algebra) and NNRC (Named Nested Relational Calculus). Translations between all three languages and their attendant proofs of correctness are included. Additionally, a mechanization of a type system for the main languages is provided, along with bidirectional proofs of type preservation and proofs of the time complexity of the various compilers

    A Pattern Calculus for Rule Languages: Expressiveness, Compilation, and Mechanization

    Get PDF
    This paper introduces a core calculus for pattern-matching in production rule languages: the Calculus for Aggregating Matching Patterns (CAMP). CAMP is expressive enough to capture modern rule languages such as JRules, including extensions for aggregation. We show how CAMP can be compiled into a nested-relational algebra (NRA), with only minimal extension. This paves the way for applying relational techniques to running rules over large stores. Furthermore, we show that NRA can also be compiled back to CAMP, using named nested-relational calculus (NNRC) as an intermediate step. We mechanize proofs of correctness, program size preservation, and type preservation of the translations using modern theorem-proving techniques. A corollary of the type preservation is that polymorphic type inference for both CAMP and NRA is NP-complete. CAMP and its correspondence to NRA provide the foundations for efficient implementations of rules languages using databases technologies

    Extending Stan for Deep Probabilistic Programming

    Full text link
    Stan is a popular declarative probabilistic programming language with a high-level syntax for expressing graphical models and beyond. Stan differs by nature from generative probabilistic programming languages like Church, Anglican, or Pyro. This paper presents a comprehensive compilation scheme to compile any Stan model to a generative language and proves its correctness. This sheds a clearer light on the relative expressiveness of different kinds of probabilistic languages and opens the door to combining their mutual strengths. Specifically, we use our compilation scheme to build a compiler from Stan to Pyro and extend Stan with support for explicit variational inference guides and deep probabilistic models. That way, users familiar with Stan get access to new features without having to learn a fundamentally new language. Overall, our paper clarifies the relationship between declarative and generative probabilistic programming languages and is a step towards making deep probabilistic programming easier
    • …
    corecore